半多月的时间过去,原本空阔的中心区域如今已经塞满了各种材料和零件。
正正方方的中心区域也有了一个偌大的半成品圆环,直径超过了五十米,铺在地上,像是一个从中破开的巨大轮胎。
对比起泰山基地里面的可控核聚变装置,亚马逊雨林基地中这个反应堆占地面积大了整整三倍。
而建成后,它的发电能力可不止三倍,三十倍往上翻都不稀奇。
可控核聚变反应堆的发电能力一方面和装置中正在进行聚变反应的等离子体数量有关,另一方面则是和发电装置有关。
如果说将磁流体发电以及顺磁自旋发电替换成烧开水的话,发电量能降低最少一般。
因为两者对于热能的利用效率是完全不同的。
尽管目前的最高效率的水轮机对于动能的利用效率能达到百分之九十五以上,但烧开水利用蒸汽进行推动轮机发电的效率其实只有百分之四十到五十左右。
因为在烧开水以及蒸汽传递的过程中会损失相当大一部分的热能。
不过即便是这样,对于人类来说,要把热能大规模转化成电能,目前来说烧开水还真就是最好的方式。
虽然烧开水也未必就是效率最高的,但综合考虑成本规模和易得性,它是唯一的选择。
如果说要提升对热能的利用效率的话,烧开氟利昂或者烧开氢气、氦气、高温锂蒸汽一类接近理想气体的气体效率远比烧开水要高。
烧开水的发电效率能达到百分之五十的话,那烧开氟利昂的效率能达到百分之七十以上;而烧开高温锂蒸汽的对于热能的利用效率能达到百分之八十五以上。
但无论是成本还是环保,都注定了烧开氟利昂或者烧开高温锂蒸汽没法大规模实用。
所以人类文明一直以来的发电方式,其实就是在想着法子烧开水。
因为这的确是最合适的办法。
只不过在这一座可控核聚变反应堆建立起来后,烧开水的发电方式在一定程度上就会成为历史。
无论是磁流体发电还是顺磁自旋发电,应用在可控核聚变反应堆上,效率都远比烧开水更高。
磁流体发电技术在于磁流体的等离子体横切穿过磁场时,等离子体的正负粒子在磁场的作用下分离,而聚集在与磁力线平等的两个面上,由于电荷的聚集,从而产生电势差,进而导出电能。
其实就目前来说,磁流体发电本身的效率仅仅只有百分之三十左右,远比不上烧开水。
但是它使用过后等离子气体,依旧具有相当高的温度。
这些经过磁流体发电后排出的等离子气体可送往一般锅炉继续燃烧成蒸汽,驱动汽轮机发电。
进而组成更高效率的联合循环发电,总的热效率能达到百分之六十到七十左右。
是目前正在开发中的高效发电技术中最高的。
除此之外,利用等离子气体还可以做到有效地脱硫,有效地控制硫化物的产生,是一种低污染的联合循环发电技术。
当然,这种脱硫,其实是介于使用煤炭等化石燃料加热等离子气体的基础上的。
如果是应用到可控核聚变技术上,有效脱硫这种优点就不是什么优点了。
毕竟可控核聚变反应堆不产生硫,它只产生超高温的中子辐射。
如何更高效率的利用超高温的中子辐射,才是可控核聚变技术中需要研究的东西。
.......
大半个月时间过去,可控核聚变反应堆组装了一小部分,直播间里面的观众还想继续看,但韩元却不得不停下手里的工作了。
无他,红外光太空望远镜的制造和组装工作已经完成了,他接下来的重点工作是将这台比韦伯望远镜观察能力更强的太空望远镜送入l2拉格朗日点,并展开工作。
这是系统的任务,远比建造可控核聚变反应堆要更重要。
放下手中的工作,韩元赶到了数控工厂。
四个多月前,红外光外太空望远镜的抛光、组装、调试工作一直都在进行。
而四个月过去,这台望远镜总算是完成了。
已经完成了整体组装、调试工作的红外太空望远镜存放在数控工厂内的顶级无尘室内。
换好衣物,韩元带着拍摄设备进入了无尘室,映入眼帘的是一个直径超过二十米的庞然大物。
庞大的红外光望远镜静静的矗立在无尘室内,银白色的底座上支撑着一面金黄色的主镜,看起来就像是一艘帆船一样。
十八面铍铱合金镜面组成了一面庞大的主镜,主镜全部展开后,直径超过了十一米,几乎是韦伯望远镜主镜的两倍大,是哈勃望远镜的五倍。
庞大的主镜能让它看到比韦伯望远镜更远的宇宙深空,理论上来说,这台望远镜能看到宇宙大爆炸后一亿年左右的时间,也就是它能看到宇宙中第一批甚至是第一颗恒星散发的光芒,甚至看到宇宙大爆炸后炽热辐射形成的‘夸克-胶子等离子体’散发出来的红外辐射。
当然,这仅仅是理论上的计算数据,实际上能看多远,能看到多少细节还要等这台太空望远镜上天后才能知道。
【金灿灿的,真好看。】
【这是和韦伯望远镜一样,镜面上镀上了一层黄金吧?】
【这么平滑的镜面,不用来摊煎饼可惜了。】
【楼上的你他娘的还真是一个人才,造价千亿起步的望远镜你拿来摊煎饼(?_?)】
【这么好的镜面,一定要贴上顶级的钢化膜保护好才行,别像韦伯一样,上去就被流星撞烂了。】
【钢化膜也研磨抛光三个月,不然达不到反射效果。】
【研磨好的钢化膜也太平滑了,得再贴一层钢化膜保护一下。】
【搁着套娃呢?】
.......